

Error Reduction and Prevention in Surgical Pathology

Raouf E. Nakhleh, MD Professor of Pathology Mayo Clinic Florida

Disclosure

• None

Course Objectives

- At the end of the presentation participants should be able to:
 - Identify where errors occur within the test cycle
 - Implement effective methods to help detect and prevent errors
 - Apply general principles of error reduction to enhance the overall quality of surgical pathology

Agenda

- Source, frequency and significance of errors
- General principles of error reduction
- Identification (pre-analytic) errors
- Diagnostic (analytic) error
- Post-analytic errors

Error Rates

	# of Cases	Case Selection	Error Rate(%)	Sig. Error Rate(%)
Safrin & Bark, 1993	5,397	Consecutiv e	0.5	0.26
Whitehead, 1985	3,000	Consecutiv e	7.8	0.96
Lind, 1995	2,694	Diagnostic Bx	13	1.2
Lind, 1995	480	Random	12	1.7
Renshaw, 2003	11,683		0.0 - 2.36	0.34 - 1.19
Raab, 2008	7,444 380	5% Random Focused	2.6 13.2	0.36 3.2

Error Rates Inter-institutional review

	Error Rate (%)	Significant Error Rate (%)
Kronz, 1999	N/A	1.4
Abt, 1995	7.8	5.8
Gupta, 2000	1—30	2—5
Malhotra, 1996	11.6	N/A
Weir, 2001	6.8	3.7
Tsung, 2004	11.1	5.9
Swapp, 2012	5.4	0.6

Errors in Surgical Pathology

- Pre-analytic
 - Wrong identification: 27-38%
 - Defective specimens: 4-10%
- Analytic
 - Diagnostic mis-interpretation: 23-29%
- Post-analytic
 - Defective report: 29-44%
- Am J Clin Pathol 2008;130:238-246

The Doctors Company

- Am J Surg Pathol 2004;28:1092-1095
- 272 surgical pathology claims (1998-2003)
- 166 (61%) false negative
- 73 (27%) false positive
- 10 (4%) frozen section
- 22 (8%) operational
 - 13 mix-ups -----

 - 2 mislabeled biopsy site
 - One transcription error, "no" omitted before malignant cells

Analytic

Pre-analytic

171 Jury Verdict and Settlements

- Arch Pathol Lab Med. 2007;131:615-618
- LexisNexis search

	Surgical Pathology	Cytology	Clinical Pathology
1988-1993	26	9	16
1994-1999	25	20	14
2000-2005	33	19	9
Total	84 (49%)	48 (28%)	39 (23%)

Surgical Pathology Cases

- False negative, 73% Analytic
- False positive, 19% —
- - 4 lost or mixed-up specimens
 - 2 floaters lead to false positive
 - 1 no communication of lack of chorionic villi in POC leading to ruptured tube

Post-analytic

Risk

- Pre-analytic
 - Specimen identification
 - Clinical information
- Analytic
 - Diagnostic accuracy
- Post-analytic
 - Report completeness
 - Communication of significant results

Specific Factors That Lead to Errors

- Hand-offs
 - Weak links
- Complexity
 - Risk of error increases with every step
- Inconsistency
 - Level of training, performance, procedures, communication, language or taxonomy

Specific Factors That Lead to Errors

- Human intervention
 - Machines are better at routine tasks
 - Humans are better in unexpected conditions
- Time constraints
 - Forces compromise
- Inflexible hierarchical culture

General Error Reduction Methods

- Standardize all procedures
- Remove distractions
 - Accessioning, grossing, cutting, microscope, sign-out
 - Make people aware of this potential
- Automate where possible
 - Specimen handling, analyzers
 - Comprehensive computer systems

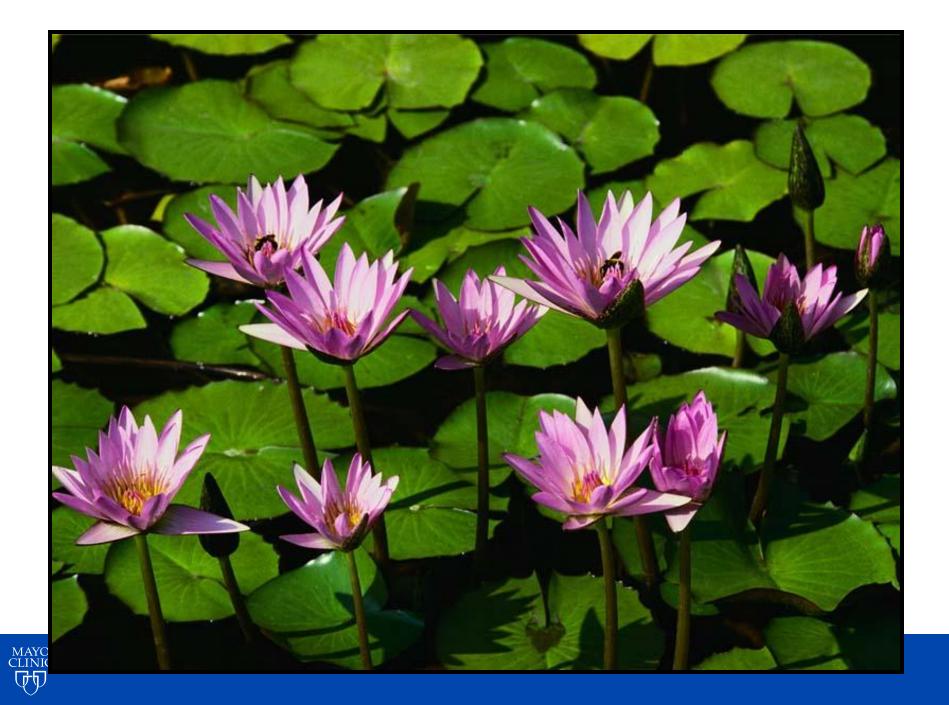
General Error Reduction Methods

- Remove inconsistent tools
 - Handwriting
- Reduce complexity
 - Automation
 - Lean design
- Make everyone aware of hand-offs (problem points)
- Reduce reliance on memory
 - Checklists

General Error Reduction Methods

- Enhance communication
 - Electronic medical record
 - Computer physician order entry (CPOE)
- Adequate and appropriate staffing
 - Batch work
 - Redundancy
 - Suitability
- Adequate and appropriate facilities
 - Space, lighting
- Reduce the stress level

General Principles of Error Reduction


- Sustained error reduction generally comes with a comprehensive persistent effort
- Unlikely to succeed with one intervention
- Continuously examine and redesign systems
- Build-in prevention and detection systems through QA and QC measures

General Principles of Error Reduction

- Continuously monitor and analyze QA and QC data
- Intervene at the earliest sign of variations
- Share quality assurance data
- Communicate to all workers that their work matters to patients

Pre-analytic Errors

- Specimen identification
- Specimen collection
- Specimen labeling
- Specimen fixation
- Specimen transport
- Accessioning

- Reasons for ID errors
 - Dependent of numerous individuals and locations outside the control of the laboratory
 - Inconsistent training
 - Inconsistent application of labeling standards

- CAP study of 1 million surgical specimens in 417 Laboratories
 - 6% deficiencies (Median 3.4%)
 - Specimen ID problems 9.6%
 - Information problems 77%

3.6%

- Handling problems
- Others 9.7%

Arch Pathol Lab Med 1996;120:227

Root Cause Analysis of VA Laboratories

- Arch Pathol Lab Med 2010;134:244-255
- 227 Root Cause Analysis Reports
- ID errors accounted for 182/253 adverse events
- 132 (73%) pre-analytic, 37 (20%) analytic, 13 (7%) post-analytic
- Mislabeling associated with "batching" (35)
- Manual entry of lab forms (14)
- Failure of 2 person verification in blood bank (20)
- 27/37 analytic relabeling of containers-blocksspecimens

- Joint Commission patient safety goal
 - Improve the accuracy of patient identification
- CAP patient safety goal
 - Improve patient and sample identification

 Mishaps have led to disastrous examples of wrong surgery or treatment

- PSG provide the muscle to be able to attack this problem
- Need to adopt specimen identification as an institutional goal (change the culture)
 - QA measure for clinics, OR, etc.
- Cannot be achieved from within the laboratory

- Sustained awareness campaign
- Change the culture
 - Extensive education and training with annual refresher sessions
 - -Recent report of specimen time-out in the OR
- Strict adherence to labeling standards and labeling procedures
- Remote order entry (forcing function)
- Newer technology may be helpful
 - -Recent reports of "DNA time out"
- Make everyone in the process aware of pitfalls and the possibility of misidentified specimens

Factors that Improve Performance

- Limit preprinting of labels (batch printing)
- Look for ID errors prior to release of results (QC checks)
- Investigate patient ID when not on file
- Continuously monitor ID errors
- Check report vs. requisition
- Use strict acceptance (rejection) criteria
- Arch Pathol Lab Med 2006;130:1106-1113

Improvement in Patient Identification

- 1 year, 0.8%
- 2 years, 2.7%
- 3 years, 3.8%
- 4 years, 4.1%
- 5 years, 5.6%
- 6 years, 6.2%
- Arch Pathol Lab Med 2003;126:809-815

Specimen ID

- Surgical specimen identification error: A new measure of quality in surgical care. Surgery 2007;141:450-5
- Dept of Surgery, John Hopkins
 - 21,351 surgical specimens
 - 91 surgical specimen (4.3/1000) ID errors
 - 18 not labeled
 - 16 empty containers
 - 16 laterality incorrect
 - 14 incorrect tissue site
 - 11 incorrect patient
 - 9 no patient name
 - 7 no tissue site
- 0.512% outpatient clinic, 0.346% operating rooms

Gross Room and Histology Lab

- Significant opportunity for error
- 2009 Q-Probes study in 136 labs
 - 1.1/1000 mislabeled cases
 - 1.0/1000 mislabeled specimens
 - 1.7/1000 mislabeled blocks
 - 1.1/1000 mislabeled slides

Gross Room and Histology Lab

- Error frequency
 - Before and at accessioning 33.3 %
 - Block labeling and dissection 31.9 %
 - Tissue cutting and mounting 30.4%
- Errors detected at the one or two steps immediately after the error

Include periodic error checks throughout the system

Gross Room and Histology Lab Solutions

- Lean redesign
- Am J Clin Pathol 2009;131:468-477
 - Reduce case ID errors 62%
 - Reduce slide ID errors 95%
- Lean production advantages
 - Eliminates procedural steps (simplification)
 - Aligns and even out workflow (eliminate batch work)
 - Judicial use of technology
 - Barcodes, readers, labelers (consistency)
 - Standardization of procedures (consistency)

Error Factors

- Factors that correlated with error
 - Pathologist
 - Specimen type (breast, gyn >>GI, Skin)
 - Diagnosis (non-dx, atypia >>neg)
 - Sub-specialization
 - # of pathologist on report
- Factors not correlated with error
 - Workload
 - Years of experience
 - Use of special stains
- Am J Clin Pathol 2007;127:144-152

Accurate Interpretive Diagnoses

- Knowledge, Experience and Training
- Standardization of Terminology and Procedures
- Clinical History and Clinical Correlation
- Ancillary Studies
- Case Reviews

Knowledge, Experience and Training

- Initial qualification
 - Medical school, residency, boards
 - JC Focused professional practice evaluation (FPPE)
- Ongoing education and ongoing competence assessment
 - ABP four part MOC process
 - JC Ongoing professional practice evaluation (OPPE)

Standardization of Terminology and Procedures

- Diagnostic terminology
 - Cancer diagnosis/checklists
 - Non-cancer diagnosis
 - Banff rejection grading
 - Hepatitis grade and stage
 - Etc.
- Laboratory and sign-out procedures

Standardized Diagnostic Criteria

- Breast borderline lesions
- Rosai Am J Surg Pathol 1991;15:209-21
 - 17 proliferative lesions
 - 5 pathologists with interest in breast disease
 - Each used his/her criteria
 - No agreement on any case by all 5 pathologists
 - 33% diagnoses spanned hyperplasia to CIS
 - Some pathologists consistently more benign or more malignant
 - High level of variability

Standardized Diagnostic Criteria

- Schnitt Am J Surg Pathol 1992;16:1133-43
 - 24 proliferative lesions
 - Six expert breast pathologists
 - Used the same diagnostic criteria (Page)
 - Complete agreement in 58% of cases
 - Agreement of 5 or more in 71%
 - Agreement of 4 or more in 92%
 - No pathologists was more benign or malignant than others

Standardized Diagnostic Criteria

- Use of standardized checklists
 - Increases report completeness
 - Everyone uses the same language
 - Facilitates establishment and comparison of treatment protocols
- Forces pathologists to update their knowledge
 - Motivation for ongoing educations CME
 - Checklist what does this mean, how do I evaluate this?

Standardization of Procedures and Terminology

- Sign out procedures
 - Use of standardized terminology
 - Use of checklist
 - Selected case reviews before sign-out
- Laboratory procedures
 - Fixation time
 - Gross room dissection and taking sections.
 - Consistent uniform processing of tissue (fixation, cutting, staining)
 - Automation (usually leads to more uniform procedures)

Clinical History and Clinical Correlation

- Understanding the clinical question
- In part why sub-specialists do better at addressing specific situations.
- Affects report completeness
- Affects diagnostic accuracy
 - R/O tumor
 - Medical disease

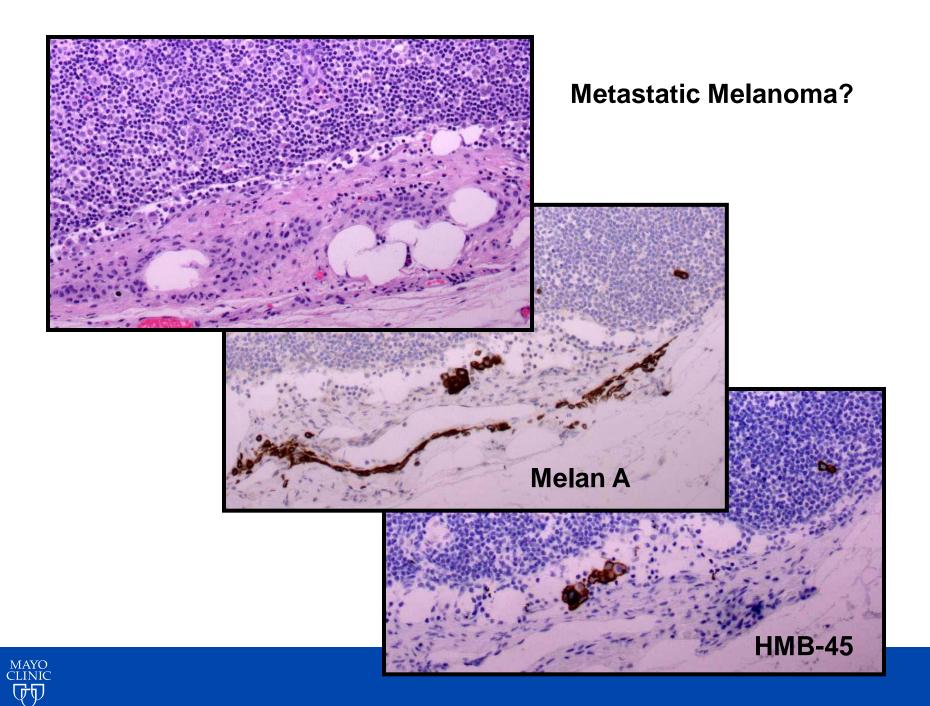
Clinical History

- Clinical information in surgical pathology
- 771,475 case from 341 institutions
- 2.4% of cases have no history
- 5594 (0.73%) required additional information
- 31% resulted in a delay in diagnosis
- 6.1% of cases new information lead to substantial change in diagnosis

Clinical History

- Study of amended reports
 - 10% additional clinical history
 - 20% clinician identifies clinicopathologic discrepancy
 - Arch Pathol Lab Med. 1998;122:303-309
- Malpractice Claims
 - 20% failure to obtain all relevant information
 - Am J Surg Pathol 1993;17:75-80

Clinical History


- Solutions
 - Electronic medical record
 - Multidisciplinary teams
 - Tumor board or other multidisciplinary conference
 - Sub-specialization

Ancillary Studies

- Mostly a blessing for pathologists
- Must work hard to maintain reliability of ancillary studies
- Complex systems requiring stringent quality control and quality assurance

Ancillary Studies

- Help determine cell lineage and diagnosis
 - Prostate specific antigen
 - HMB45, Melan A
 - TTF-1
 - Thyroglobulin
 - CD 117
- Help determine therapy
 - ER, PR, HER2
 - BRAF, KRAS, ALK, EGFR, CD117, CD20

Redundancy (Review of Cases)

- Principle method used to prevent or detect cognitive errors
- Most AP labs have limited # of specimens for double read
 - Breast, thyroid, pigmented skin lesions, Barrett's dysplasia, Brain tumors
- Taught early in training (instinctive)
- One method to keep up to date
- Problematic for small groups

Consultations

- 0.5% of all cases (median .7%, 0-2%)
 - Arch Pathol lab med 2002;126:405-412
- Less in larger groups
 - Presence of experts on staff
- ASCP guidelines
 - Am J Clin Pathol 2000;114:329-335
 - Problem prone case
 - Defined by the individual, group, clinician, patient or literature

Frequency of Routine Second Opinion

 Benign diagnosis 	
 Breast 	6%
 Prostate 	18%
 Nevi 	8%
 Malignant diagnosis 	
 Breast CA on needle Bx 42% 	
 Prostate CA on needle Bx 	43%
 Melanoma 	58%
 GI CA on biopsy 	34%
Unpublished data (2001) from PIP program	

Routine Review Before Sign-out

- CAP 2008 Q-Probes study
 - Archives Pathol Lab Med 2010;134:740-743
- 45 Laboratories, 18,032 cases
- 6.6% (median 8.2%) had review before signout
- 78% reviewed by one additional pathologist.
- 46% for a difficult diagnosis
- 43% per departmental policy

Routine Review Before Sign-out

- 45% malignant neoplasm
- Most common organ systems
 - GI 20%, breast 16%, skin 13%, GYN 10%
- Labs with review policy
 - Higher review rates (9.6% vs. 6.5%)
 - Reviewed a higher % of malignancies (48% vs. 36%)

Routine Second Opinion

- 13% of case were seen by >1 pathologist
- Disagreement rate 4.8% vs. 6.9%, P=.004
- Amended report rate 0.0 vs. 0.5%
- Best selection of case to be reviewed remains unknown

Am J Clin Pathol 2006;125:737-739

Routine Second Opinion

- Comparison of rates of misdiagnoses over two one year periods
 - Without routine second review
 - With routine second review
- Results
 - 10 misdiagnoses without review out of 7909 cases (1.3%)
 - 5 misdiagnoses with review out of 8469 cases (0.6%)

Pathology Case Review 2005;10:63-67

Routine Second Opinion

- Study of amended reports
- 1.7 million cases in 359 labs
- 1.6/1000 amended report reviewed after sign-out
- 1.2/1000 amended reports reviewed before sign-out
- Arch Pathol Lab Med. 1998;122:303-309

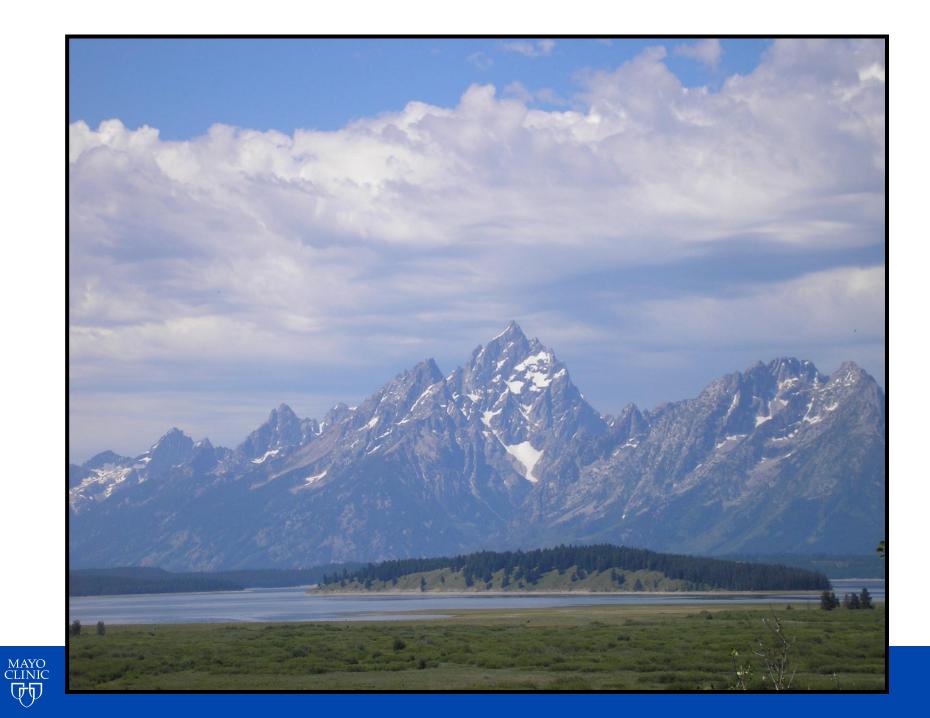
Pre-Sign out Quality Assurance Tool

- Am J Surg Pathol 2010;34:1319-1323
- Randomly selects an adjustable % of case for review by a second pathologist
- Disagreements similar to retrospective reviews
- TAT slightly shorter (P=0.07)
- Amended reports decreased by 30%
- Amended reports for diagnostic edit decreased 55%

Method of Review (Renshaw and Gould)

- Tissue with highest amended rates: Breast 4.4%, endocrine 4%, GYN 1.8%, cytology 1.3%
- Specimen types with highest amended rates: Breast core bx 4.0%, Endometrial curettings 2.1%
- Diagnoses with highest amended rates: nondx 5%, atypical/suspicious 2.2%
- Am J Clin Pathol 2006;126:736-7.39

Method of Review (Renshaw and Gould)


- Reviewing nondiagnostic and atypical /suspicious – review 4% of cases and detect 14% of amended reports
- Reviewing all breast, GYN, non-GYN cytology and endocrine material – review 26.9% of cases and detected 88% of amended reports.

Method of Review (Raab et al)

- Targeted 5% random review vs. focused review
- 5% random review 195/7444 cases (2.6%)
- Focused review 50/380 cases (13.2%)
- Thyroid gland (pilot), GI, bone and soft tissue, GU
- P<.001
- Major errors: Random 27(0.36%) vs. Focused 12 (3.2%)
- Am J Clin Pathol 2008;130:905-912

Post-Analytic Risk

- Complete reports
- Effective and timely communication of important results

Post-analytic

- Complete reporting
 - Evidence based medicine: oncology
 - Commission on Cancer of the American College of Surgeons
 - Cancer Program Standards 2004
 - 90% of cancer reports must have required elements based on the CAP's publication *Reporting on Cancer Specimens*
 - Summary checklists

Post-analytic

- Branston et al. European J Cancer 38;764:2002
 - Randomized controlled trial of computer form-based reports
 - 16 hospitals in Wales
 - 1044 study, 998 control
 - 28.4% increase in report completeness
 - Acceptable by pathologist
 - Preferred by clinicians

Critical Value Policies

- Based on regulatory mandates all institutions have critical value policies
- Policies apply to clinical pathology, radiology and other areas where testing is done (cardiology, respiratory therapy, etc)
- Policies typically mandate that result is reported within a specified timeframe (usually 30 or 60 min)
- Clinical Labs report >95% within 30 min

Effective Communication of Important Results

- Regulatory mandates
- CLIA 88
 - immediately alert ... an imminent life- threatening condition, or panic or alert values
- Joint Commission
 - develop written procedures for managing the critical results,
 - define CR,
 - by whom and to whom,
 - acceptable time
- LAP
 - There is a policy regarding the communication, and documentation thereof, of significant and unexpected surgical pathology findings

Surgical Pathology and Cytology

- Tissue processing takes hours and up to a day to complete – Why 30-60 min to report?
- ?? Critical most diagnoses are important for treatment but not imminently life threatening
- Poor agreement among pathologists and clinicians
- Most reported cases of patient harm related to communication problems are due to lack of communication or missed communication not delay

Pereira et al AJCP 2008;130:731

- Do you believe that there are critical values in:
 - Surgical Pathology, 44/73 yes, 24 blank
 - Cytology, 31/57 yes, 22 blank
- Surgical Pathology Call ASAP
 - Bacteria in heart or BM 91%
 - Organism in immune compromised patient 85%
- Cytology Call ASAP
 - Bacteria or fungi in CSF 81% and 88%

Effective Communication of Important Results

- Arch Pathol Lab Med 2009;133:1375
- 1130 Laboratories surveyed
- 75% had AP "Critical Diagnosis" policy
- 52% of those with policy listed specific diagnoses
- Specific conditions included in the policy
 - All malignancies 48.3%
 - Life threatening infection 44.6%

Effective Communication of Important Results

- Arch Pathol Lab Med 2012;136:148-154
- Urgent diagnoses
 - Imminently life threatening
 - Very short list
 - Reported quickly
 - e.g. New infection in an immune compromised patient
- Significant unexpected diagnoses
 - Not imminently life threatening
 - Unusual or unexpected
 - Difficult to anticipate
 - Needs communication & documentation
 - e. g. carcinoma in biopsy taken for medical disease

Summary

- Source, frequency and significance of errors
- General principles of error reduction
- Identification errors (pre-analytic)
- Reasons for diagnostic (analytic) error
 - Clinical history and clinical correlation
 - Prospective and retrospective case reviews
- Post-analytic errors
 - Report completeness
 - Communication beyond the report

Thank You!

Questions?